you have a lot to offer to this world!
гоуСэр Эрнест Резерфорд, президент Королевской Академии и лауреат Нобелевской премии по физике, рассказывал следующую историю, служащую великолепным примером того, что не всегда просто дать единственно правильный ответ на вопрос.
Некоторое время назад коллега обратился ко мне за помошью. Он собирался поставить самую низкую оценку по физике одному из своих студентов, в то время как этот студент утверждал, что заслуживает высшего балла. Оба, преподаватель и студент согласились положиться на суждение третьего лица, незаинтересованного арбитра; выбор пал на меня.
Экзаменационный вопрос гласил: «Объясните, каким образом можно измерить высоту здания с помощью барометра». Ответ студента был таким: «Нужно подняться с барометром на крышу здания, спустить барометр вниз на длинной веревке, а затем втянуть его обратно и измерить длину веревки, которая и покажет точную высоту здания».
Случай был и впрямь сложный, так как ответ был абсолютно полным и верным! С другой стороны, экзамен был по физике, а ответ имел мало общего с применением знаний в этой области.
Я предложил студенту попытаться ответить еще раз. Дав ему шесть минут на подготовку, я предупредил его, что ответ должен демонстрировать знание физических законов. По истечении пяти минут он так и не написал ничего в экзаменационном листе. Я спросил его, сдается ли он, но он заявил, что у него есть несколько решений проблемы, и он просто выбирает лучшее.
Заинтересовавшись, я попросил молодого человека приступить к ответу, не дожидаясь истечения отведенного срока. Новый ответ на вопрос гласил: «Поднимитесь с барометром на крышу и бросьте его вниз, замеряя время падения. Затем, используя формулу L = (a*t^2)/2, вычислите высоту здания».
Тут я спросил моего коллегу, преподавателя, доволен ли он этим ответом. Тот, наконец, сдался, признав ответ удовлетворительным. Однако студент упоминал, что знает несколько ответов, и я попросил его открыть их нам.
«Есть несколько способов измерить высоту здания с помощью барометра», начал студент. «Например, можно выйти на улицу в солнечный день и измерить высоту барометра и его тени, а также измерить длину тени здания. Затем, решив несложную пропорцию, определить высоту самого здания.»
«Неплохо», сказал я. «Есть и другие способы?»
«Да. Есть очень простой способ, который, уверен, вам понравится. Вы берете барометр в руки и поднимаетесь по лестнице, прикладывая барометр к стене и делая отметки. Сосчитав количество этих отметок и умножив его на размер барометра, вы получите высоту здания. Вполне очевидный метод.»
«Если вы хотите более сложный способ», продолжал он, «то привяжите к барометру шнурок и, раскачивая его, как маятник, определите величину гравитации у основания здания и на его крыше. Из разницы между этими величинами, в принципе, можно вычислить высоту здания. В этом же случае, привязав к барометру шнурок, вы можете подняться в вашим маятником на крышу и, раскачивая его, вычислить высоту здания по периоду прецессии.»
«Наконец», заключил он, «среди множества прочих способов решения проблемы лучшим, пожалуй, является такой: возьмите барометр с собой, найдите управляющего зданием и скажите ему: «Господин управляющий, у меня есть замечательный барометр. Он ваш, если вы скажете мне высоту этого здания».
Тут я спросил студента — неужели он действительно не знал общепринятого решения этой задачи. Он признался, что знал, но сказал при этом, что сыт по горло школой и колледжем, где учителя навязывают ученикам свой способ мышления.
Студентом этим был Нильс Бор (1885–1962), датский физик, лауреат Нобелевской премии 1922 г.
Некоторое время назад коллега обратился ко мне за помошью. Он собирался поставить самую низкую оценку по физике одному из своих студентов, в то время как этот студент утверждал, что заслуживает высшего балла. Оба, преподаватель и студент согласились положиться на суждение третьего лица, незаинтересованного арбитра; выбор пал на меня.
Экзаменационный вопрос гласил: «Объясните, каким образом можно измерить высоту здания с помощью барометра». Ответ студента был таким: «Нужно подняться с барометром на крышу здания, спустить барометр вниз на длинной веревке, а затем втянуть его обратно и измерить длину веревки, которая и покажет точную высоту здания».
Случай был и впрямь сложный, так как ответ был абсолютно полным и верным! С другой стороны, экзамен был по физике, а ответ имел мало общего с применением знаний в этой области.
Я предложил студенту попытаться ответить еще раз. Дав ему шесть минут на подготовку, я предупредил его, что ответ должен демонстрировать знание физических законов. По истечении пяти минут он так и не написал ничего в экзаменационном листе. Я спросил его, сдается ли он, но он заявил, что у него есть несколько решений проблемы, и он просто выбирает лучшее.
Заинтересовавшись, я попросил молодого человека приступить к ответу, не дожидаясь истечения отведенного срока. Новый ответ на вопрос гласил: «Поднимитесь с барометром на крышу и бросьте его вниз, замеряя время падения. Затем, используя формулу L = (a*t^2)/2, вычислите высоту здания».
Тут я спросил моего коллегу, преподавателя, доволен ли он этим ответом. Тот, наконец, сдался, признав ответ удовлетворительным. Однако студент упоминал, что знает несколько ответов, и я попросил его открыть их нам.
«Есть несколько способов измерить высоту здания с помощью барометра», начал студент. «Например, можно выйти на улицу в солнечный день и измерить высоту барометра и его тени, а также измерить длину тени здания. Затем, решив несложную пропорцию, определить высоту самого здания.»
«Неплохо», сказал я. «Есть и другие способы?»
«Да. Есть очень простой способ, который, уверен, вам понравится. Вы берете барометр в руки и поднимаетесь по лестнице, прикладывая барометр к стене и делая отметки. Сосчитав количество этих отметок и умножив его на размер барометра, вы получите высоту здания. Вполне очевидный метод.»
«Если вы хотите более сложный способ», продолжал он, «то привяжите к барометру шнурок и, раскачивая его, как маятник, определите величину гравитации у основания здания и на его крыше. Из разницы между этими величинами, в принципе, можно вычислить высоту здания. В этом же случае, привязав к барометру шнурок, вы можете подняться в вашим маятником на крышу и, раскачивая его, вычислить высоту здания по периоду прецессии.»
«Наконец», заключил он, «среди множества прочих способов решения проблемы лучшим, пожалуй, является такой: возьмите барометр с собой, найдите управляющего зданием и скажите ему: «Господин управляющий, у меня есть замечательный барометр. Он ваш, если вы скажете мне высоту этого здания».
Тут я спросил студента — неужели он действительно не знал общепринятого решения этой задачи. Он признался, что знал, но сказал при этом, что сыт по горло школой и колледжем, где учителя навязывают ученикам свой способ мышления.
Студентом этим был Нильс Бор (1885–1962), датский физик, лауреат Нобелевской премии 1922 г.
Дело не в преподе. Просто в точных науках рассуждения не в тему не допускаются. На то они и точные.
Глупо изобретать велосипед. К тому же сам-то он прекрасно знал правильный ответ, дурковал просто. Отсюда вывод: сначала делать так, как считается общепринятым и верным, а потом уже умничать.
Вполне нормально было бы, если б он написал сначала правильный ответ, а потом все свои варианты. И сдал. Преподы поржали бы, а у него была бы нормальная оценка и никаких проблем.
А вот этого не люблю! Бесят меня такие люди.
Если к тому же и учатся, и знают правильные ответы - то да, им пробиться легче. Но чаще всего просто выёбываются, и за понтами нет абсолютно ничего.
Это - да. Но всё равно не люблю, когда выебываются.
хм... а я так люблю делать... даже если знаю как правильно. это не понты. лично я так прикалываюсь. кто не понял - обычно меня не парит. а кто понимает такое, с теми у нас афигенные отношения) и с преподами тож) и,кста, мои лучшие друзья точно такие же)
В исскустве? Хм, пожалуй... А знаешь, на мой неискушенный взгляд, таким массовым выебыванием в исскустве являются все эти кубизмы-сюрреализмы, что там ещё, тебе лучше знать. А?
А чё тут не понимать, это текстурка! В фотошопе пригодится!